Monotone Boolean dualization is in co-NP[log2n]

نویسندگان

  • Dimitris J. Kavvadias
  • Elias C. Stavropoulos
چکیده

In 1996, Fredman and Khachiyan [J. Algorithms 21 (1996) 618–628] presented a remarkable algorithm for the problem of checking the duality of a pair of monotone Boolean expressions in disjunctive normal form. Their algorithm runs in no(logn) time, thus giving evidence that the problem lies in an intermediate class between P and co-NP. In this paper we show that a modified version of their algorithm requires deterministic polynomial time plus O(log2 n) nondeterministic guesses, thus placing the problem in the class co-NP[log2 n]. Our nondeterministic version has also the advantage of having a simpler analysis than the deterministic one.  2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational aspects of monotone dualization: A brief survey

Dualization of a monotone Boolean function represented by a conjunctive normal form (CNF) is a problem which, in different disguise, is ubiquitous in many areas including Computer Science, Artificial Intelligence, and Game Theory to mention some of them. It is also one of the few problems whose precise tractability status (in terms of polynomial-time solvability) is still unknown, and now open ...

متن کامل

Enumerating Minimal Hypotheses and Dualizing Monotone Boolean Functions on Lattices

Any monotone Boolean function on a lattice can be described by the set of its minimal 1 values. If a lattice is given as a concept lattice, this set can be represented by the set of minimal hypotheses of a classification context. Enumeration of minimal hypotheses in output polynomial time is shown to be impossible unless P = NP, which shows that dualization of monotone functions on lattices wit...

متن کامل

Dualization in lattices given by ordered sets of irreducibles

Dualization of a monotone Boolean function on a finite lattice can be represented by transforming the set of its minimal 1 to the set of its maximal 0 values. In this paper we consider finite lattices given by ordered sets of their meet and join irreducibles (i.e., as a concept lattice of a formal context). We show that in this case dualization is equivalent to the enumeration of so-called mini...

متن کامل

Berge Multiplication for Monotone Boolean Dualization

Given the prime CNF representation φ of a monotone Boolean function f : {0, 1} 7→ {0, 1}, the dualization problem calls for finding the corresponding prime DNF representation ψ of f . A very simple method (called Berge multiplication [3, Page 52–53]) works by multiplying out the clauses of φ from left to right in some order, simplifying whenever possible using the absorption law. We show that f...

متن کامل

Exact Transversal Hypergraphs and Application to Boolean µ-Functions

Call an hypergraph, that is a family of subsets (edges) from a finite vertex set, an exact transversal hypergraph iff each of its minimal transversals, i.e., minimal vertex subsets that intersect each edge, meets each edge in a singleton. We show that such hypergraphs are recognizable in polynomial time and that their minimal transversals as well as their maximal independent sets can be generat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2003